mefiaml&wrmf of Theoreticat Physies, Vol. 7, No. 4 (1973), pp. 263-266
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Abstract
The entvopy of the geadesic flow associated to 2 fibered dynamical system is shown to be

Zero; ia particalar the emtropy of & guantizable dypamical system is zero. An ergodic
denamical system which defines a guarrtizabls dynames! sysrem s outlined. .

3. Intreduction

A ﬁynamical sysiemn {DS} in the sense of Poincaré, Birkhofl snd Reeh
18 2 pair {M, ) where A is a connerted differentiable manitold and C is 2
differentiable vector field on M which does not vanish everywhere. We will
vonsider only monsingular DSs, ie., C is popnull. A D8 is regular i the

folistion defined by the nonnuli vector field C is regular in the sense of -

Palais {1957); and 2 DS is proper (or complete) if C gererates a global
1-parametc‘ group ¢, = exp(tC) (—w < t < w). Of course if M is compact,
Cis proper (Kobayashi & Nomizu, 1963, Prop. 1.1.6). The ;erwd function
of a DS is'the function A{x} = inf{t > G{q&,(x} xforxin M} If 7 is a finite
constant, then the DS is called finite. A regular, proper finite DS is called 2
Jibered dynamical system (FDS). The name arises from the following facts.

If 7 is the orbit space, M ¢, for FDS (M, ), then EiSst— M5B wa

principal circle bundle by Palais (1957, Section I1.5). Furthermore, for any
principal circle bundie £ there is a connection I-form w on M with curvature
form @ =dw and a unique integral 2-form © on B such that p* @ =@
(Hurt, 1973; Kobayashi, 1936). In addition the following result i3 easily
shown: o .

Proposition (TYanno {1965)) 1. If (M, C) is a proper regular DS, then the
following are equivalent:

(2} A{x)is a constant {finite or infinite};

(b} ihere exists 2 1-form @ on M such that w(C} =1 and Z(C)w =0;

{c) there exists & liemannian metric g on M such that g{C,C) =1 and

F(Crg=0.
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As we have noted in Furt (19712, Section 2) 5 contact rﬂfmif‘cié {M, 0

where wis 2 Torm satisfving @ A (dof 5 O dotermines a DS (3, ) where
L is the *associated vector field” to o. I this DS is regular pr Dpcr and finite
(M, C) is called 3 quaniizable dynamical system (QDS) (Hurt, 19713,
1971b, 1973). Clearly & Q138 is 2 FDB. In eddition, gauge invariant unified
field stractures {cf. Hort, 1973, and 1973, Section 1} are FDSs, ’

By {c} in Proposition 1 we see that C is a unit Killing vecior; thus each
orbit of ¢, is a geodesic with respect 1o the metric g, And every Killing vector
is incompressible—i.e., C leaves the volumne element 5 of the Riemanuizn
manifold (M, g) invariant (Sasaki, 1958} Thus the flow ¢, is 3 measure
preserving transformation for the measure u on M defined by » (Godbilion,
1969, Prep 7.2.2¥ie., pih, A} = pfA} for ewry Borel sr:LA on M and
for every ¢ in B, In other words,

* Proposition 2. I (M, C)is a FDS, then (M, 1, cf;;) isa classical dynamical
systein in the sense of Avneld & Avez (1968, Section L1I).

In the case (M, C} is a QBE, the volume form g is @ A (dwy* which is
clearly inveriant by C—ie, Z(Clyp=_0-—sine 2 0)o=2(C)do=0
{of Hurt, 1971a Godbillep, 1968, Prog. 7.5.7)

2. Entropy

We review briefly the notations of entropy from Aroold & chz (1963},
Let z(¢) denote the function on [0, 1] defined by

(1}—~{ tlogs  if0<t<l

fe=20

Let o be a finite (so measurable) partition of A-—ie., a finite collection of
nenempty ponintersecting measurable subsets {4} of A Jor which
AN Ay=0ifi#fand p(M— U, ‘}-—O Let F denote the set of finke
partitions of M. The sum of two partitions x,fin Fisx M B-={4d; 0 Al in
«,f,; in f}. We say ,8 is a refinement of x denoted o < B, i forevery B, in 8
there exists an A4, in x such that p{F,—~ B, N A) =0, The entropy of a
partition & = {4} In Fis h(e) = Dieq T:{A).

Proposition (Arnold & Avez, 1968, 12.12) 2.1. If 2 << § then k() < #(B).

If ¢ is an automorphism of measure space (37, ¢} {for definition see Arnold
& Avez, 1968, App. 6), then da={H{4)};;. Then since ¢ is measure
preserving,

Proposition 2.2. h{(da) == h(z}.

Theentropy of a part;ﬂen o with respect to an automorphism ¢ is
_Hevdav...vPria -
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ERTROPY OF A PIBERED DYNAMICAL SYSTEM
The emmp y of an mﬁammpfzzm & is then

1!(¢) =sup (o, 9)

Clearly k{$) 3 0. Furdwrmm

Proposition (Arnold & Avez, 1968, 12.24) 2.3. (¢} is an invariant of the
abstract dynamical system (M, p, ¢).

I (M, 1, 9.) is 2 classival dynamical system, then ¢, is ap antomorphism
of (M, 1) for each fised ¢; se for each 8xed 3h(¢,) is defived; and A(o,)
satisfies:

Proposition (Abramov, 1959) 2.4_ &g} = |t A($,) forall ¢ m R.

Thus the natural definition for entropy of a flow of classical D‘* (M, u, b))
is h{gpg).

Let (M, p,¢,} be the classical DS defined by FDS (M, ). Clearly the
period 2 can be choser to be an integer (by modifying €). Then $4{x) =
@,(x) = x. Thus for snitably large n, - :

avPav. . Ve avav...Vdila
So by Proposi tion.2.1 and Proposition 2.2,
Moy dyov... v i tw fg{mﬂz{m} 0

R rom N

o, i) =i
-and”
: h(él} sus e, =0

By Abramov’s Theorem (Prop. 2.4) we have:

Proposztzon 25 If (M C)is a FDS with geodesw flow gb,, then A} =
_ for all 7 in R, In particular the entropy of a QDS is zero.

3. .4n Example

Let (M,p,¢,) be a classical DS in the sense of Arnold & Avez (1968)
where M is a three-dimensional manifold and 2, is an ergodic flow. Assume
the vector field associated to ¢, is finite in the sense of Section 1; and assume
there are two C = differentiable eigenfunctions f,.f; of ¢, vvhose: eigenvalues
are linearly independent over the integers Z. Then it follows directly (Niwa,
1969) that {df;,df;} are linearly independent everywhere. Let 8=
12z log fy € Tt Then p:M — T?:p(x)=(6,,5,) is of maxiral rank.
This fibration is easily shown to be locally trivial (Niwa, 1969). And 72 isa
Hodge manifsold. Trnus we have by Wiwa (1969).

Proposition 3. A, $.0 is an ergodic classical DS 2

1 ‘H" 3 n
— 5,.5“ ' M - E== T* s a principal circle bundle over a H d e manifold



266 NORMAN E. WURY
{sc 2 QDS). Furthermore ﬂw flow induced by aﬁs on B is the Jacobi (o1

% 3 =

guasi-periodic) fow {Arnoid & Avez, 1968, App. 1}

A more precise characterization of thess dynamical systems would be

helpful, in particular a generalization to circle bundles {or DSs) over

abehzm varieties; also a further siudy of induced flows in ;mncspal bundles
necded.
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